
改修技術シート 28	
改修技術名	潜熱回収高効率給湯暖房機
連絡先	大阪ガス株式会社担当:川上
	住所 大阪市中央区平野町4-1-2 電話番号 06-6205-4663
URL	なし
技術概要	従来は捨てていた燃焼排気ガスの排熱を2次熱交換機で回収する事に
	より給湯効率:約95% 暖房効率:約89% (従来約80%) という高効
	率化を実現。
	従来に比べて低 NOx で 年間約238kg-CO2を削減。(24号従来型
	給湯暖房機との比較)熱源機のサイズは従来と同じ。
	潜熱回収型高効率給湯暖房機の場合、ガス料金が一般料金より5%割引
	される。
	(大阪ガスエリア内)
	めやすとして機器の高効率化で年間約 9000 円、ガス代の割引で年間
	約 3000 円、合計で年間約 12000 円程お得になる
適用範囲	・24号・16号給湯暖房機、24号・16号風呂給湯器、16号壁貫通 型風呂給湯機
備考	・ドレンが出るのでベランダの場合、雑排水へ。PSの場合、排水立管
	もしくは浴室へのポンプアップなどが必要。
事例	・都市機構新規物件では標準採用済み。 ・約4万台/年(大阪ガスエリア内)
類似技術	
工業所有権	
(技術認証等)	
コスト	約 30 万円 備考 (適用条件等)
W	
施工期間	約 1日 備考(適用条件等)
 居付工事の可否	可 備考(必要退避日数等)
居住者や周囲への	(振動、騒音、粉じん、臭気等の影響、必要となる対応策について)
影響(工事中)	一般的な給湯器取替工事と同様の振動・騒音が発生する。
実績等	□自社独自の技術(特許等:□取得済み、□出願中、□特になし)
	□部分的に独自のノウハウ有り ■一般的な技術 (他社でも類似工法を展開)
	■一般的な技術(他社でも類似工法を展開) 年間受注: 件程度

図面·写真等

■潜熱回収のイメージ

お湯の流れ

- 送られてきた水は、 まず2次熱交換器であたためられる。
- ② あたためられたお湯は、
 1次熱交換器でさらに加熱される。

熱利用

- 🕦 約1500℃で1次熱交換器を加熱
- ② 約200℃になった燃焼ガスの熱を 2次熱交換器で再利用
- 約50℃になった燃焼ガスを排出